Section: Clustering Cluster Validation Background on Cluster Validation

نویسندگان

  • Ricardo Vilalta
  • Tomasz Stepinski
چکیده

Spacecrafts orbiting a selected suite of planets and moons of our solar system are continuously sending long sequences of data back to Earth. The availability of such data provides an opportunity to invoke tools from machine learning and pattern recognition to extract patterns that can help to understand geological processes shaping planetary surfaces. Due to the marked interest of the scientific community on this particular planet, we base our current discussion on Mars, where there are presently three spacecrafts in orbit (e.g., NASA’s Mars Odyssey Orbiter, Mars Reconnaissance Orbiter, ESA’s Mars Express). Despite the abundance of available data describing Martian surface, only a small fraction of the data is being analyzed in detail because current techniques for data analysis of planetary surfaces rely on a simple visual inspection and descriptive characterization of surface landforms (Wilhelms, 1990). The demand for automated analysis of Mars surface has prompted the use of machine learning and pattern recognition tools to generate geomorphic maps, which are thematic maps of landforms (or topographical expressions). Examples of landforms are craters, valley networks, hills, basins, etc. Machine learning can play a vital role in automating the process of geomorphic mapping. A learning system can be employed to either fully automate the process of discovering meaningful landform classes using clustering techniques; or it can be used instead to predict the class of unlabeled landforms (after an expert has manually labeled a representative sample of the landforms) using classification techniques. The impact of these techniques on the analysis of Mars topography can be of immense value due to the sheer size of the Martian surface that remains unmapped. While it is now clear that machine learning can greatly help in automating the detailed analysis of Mars’ surface (Stepinski et al., 2007; Stepinski et al., 2006; Bue and Stepinski, 2006; Stepinski and Vilalta, 2005), an interesting problem, however, arises when an automated data analysis has produced a novel classification of a specific site’s landforms. The problem lies on the interpretation of this new classification as compared to traditionally derived classifications generated through visual inspection by domain experts. Is the new classification novel in all senses? Is the new classification only partially novel, with many landforms matching existing classifications? This article discusses how to assess the value of clusters generated by machine learning tools as applied to the analysis of Mars’ surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Clustering

Clustering is one of the most important techniques in data mining. This chapter presents a survey of popular approaches for data clustering, including well-known clustering techniques, such as partitioning clustering, hierarchical clustering, density-based clustering and grid-based clustering, and recent advances in clustering, such as subspace clustering, text clustering and data stream cluste...

متن کامل

Vinayaka : a Semi-supervised Projectedclusteringmethodusing Differential Evolution

Differential Evolution (DE) is an algorithm for evolutionary optimization. Clustering problems have been solved by using DE based clustering methods but these methods may fail to find clusters hidden in subspaces of high dimensional datasets. Subspace and projected clustering methods have been proposed in literature to find subspace clusters that are present in subspaces of dataset. In this pap...

متن کامل

An Ensemble Method for Validation of Cluster Analysis

Clustering is more subjective work than classification and regression. Though classification and regression have many general validation measures, clustering has few validation measures. Also, it is difficult to develop general measure of cluster validation. So, many evaluation measures have been published for cluster validation. In this paper, we propose an ensemble method of validation for cl...

متن کامل

Fuzzy Cluster Validation Based on Fuzzy PCA- Guided Procedure

Cluster validation is an important issue in fuzzy clustering research and many validity measures, most of which are motivated by intuitive justification considering geometrical features, have been developed. This paper proposes a new validation approach, which evaluates the validity degree of cluster partitions from the view point of the optimality of objective functions in FCM-type clustering....

متن کامل

Fuzzy Cluster Validation Based on Fuzzy PCA- Guided Procedure

Cluster validation is an important issue in fuzzy clustering research and many validity measures, most of which are motivated by intuitive justification considering geometrical features, have been developed. This paper proposes a new validation approach, which evaluates the validity degree of cluster partitions from the view point of the optimality of objective functions in FCM-type clustering....

متن کامل

Fuzzy Cluster Validation Based on Fuzzy PCA- Guided Procedure

Cluster validation is an important issue in fuzzy clustering research and many validity measures, most of which are motivated by intuitive justification considering geometrical features, have been developed. This paper proposes a new validation approach, which evaluates the validity degree of cluster partitions from the view point of the optimality of objective functions in FCM-type clustering....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008